If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+1032H
We move all terms to the left:
-(-16H^2+1032H)=0
We get rid of parentheses
16H^2-1032H=0
a = 16; b = -1032; c = 0;
Δ = b2-4ac
Δ = -10322-4·16·0
Δ = 1065024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1065024}=1032$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1032)-1032}{2*16}=\frac{0}{32} =0 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1032)+1032}{2*16}=\frac{2064}{32} =64+1/2 $
| 30=2+x | | (2x-3)=(3x-2)-90 | | n+7=5n-13 | | -9=3t+,6 | | c(3)=c(8) | | 2t+3T=400 | | 90-(2x-3)=(3x-2) | | 2t+3T=440 | | 17(t)=6t+t^2/2 | | 3b+6=-483b+6=−48 | | x14=19 | | (2x-3)=(3x-2)+90 | | 0=t^2+12t-34 | | 10(x+2)=2(x+10 | | (2x-3)=(3x-2)=90 | | 6-x+9=-3 | | 6x-23=7x-31 | | x=14=19 | | 4x+3x+1x=24 | | s-10=20.94 | | 6n+29=41 | | 4n+25+2n+35=180 | | 5n+23=53 | | 4-7x-10=15x-6x-8 | | 2x^2-6x=52 | | ¾(8a+20)=6a+10 | | 31-12=6y-7y | | 87+10x+17=180 | | -3x+6=4(x+10)+8 | | 4x=3(x+30) | | 5(2-y)/3=-y | | 4.5+10m=6.18 |